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The Mathematical Association is an association, in the United Kingdom, of 
teachers and students of elementary mathematics. Its fundamental aim is to promote 
good methods of mathematical teaching, and many university mathematicians and 
other interested persons also belong to the Association, which publishes two 
journals, the long-established "Mathematical Gazette" and the more recent "Mathe
matics in School". At the Association's annual conference in Swansea in 1982, 
the newly elected President, Mr F. J. Budden, aired an interesting problem about 
touching circles. This was discussed, but not fully solved, by Tony Gardiner in the 
Mathematical Gazette [6]. We state the problem in the form of a theorem. 

THEOREM 1. Suppose that the circles a and b touch each·other, and the line 1 
is a common tangent; circle c1 touches a, b and 1 as shown in figure 1; c2 touches 
a, band c1 ; c3 touches a, band c2 , etc.; the radius ofci is ri and the distance ofits 
centre from 1 is di. Then d 2 /r2 = 7. More generally, di/ri = 2P - 1. 

b 

a 

---------
Fig. 1 

*Dr Rigby is visiting the Department of Mathematics, National University of Singapore, as a Senior Teaching 
Fellow, 1983-84. 
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When Mr Budden set this problem in his "Problems Correspondence Course" 
(which goes out, via the Mathematical Association, to any interested people, who 
include school pupils, teachers, lecturers and retired people) he received various 
solutions, some using inversion, involving varying amounts of calculation. The proof 
to be given here is in one sense much simpler because it involves only a straight
forward application of an important general theorem about inversion (Theorem 3); 
but of course calculations of some sort have to be used to prove the general theorem! 

We shall discuss Theorem 3 in section 2 and shall use it in section 3 to prove 
Theorem 1, but the proof of Theorem 3 will be deferred until section 5. In section 
3 we shall also calculate the radius of Ci in figure 1. In section 4 we shall prove 
corresponding results about a similar figure (figure 7). 

Until the second half of section 5, a prior knowledge of only a few basic facts 
about inversion will be assumed. 

2. The cosine between two circles 

It is well know that, if two circles x and y intersect at an angle e, and if we 
invert x andy to x' andy' (using any circle of inversion), then x' andy' intersect 
at the same angle e. In other words: 

THEOREM 2. The angle between two intersecting circles is an inversive invariant. 

Suppose the circles x and y meet at P and Q, and have centres X and Y and 
radii r and s; write d = XY. Let e denote the acute angle between x and y; then 
either LXPY = e (figure 2a) or LXPY = rr - e (figure 2b) since the tangents at P 
are perpendicular to the radii. Hence by the cosine formula 

cos e = I (r2 + s2 
- d 2 )/2rs 1. 

- - ----- -
y X y 

X 

lj 

(a) (6) 

Fig. 2 
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The inverse of a circle is a line if the centre of inversion lies on the circle, and the 
inverse of a line is in general a circle; hence in inversive geometry lines are regarded 
as circles of a special type. Suppose the circle x and the line y intersect at an angle 
(),as in figure 3; then cos() = e/r. 

Hence theorem 2 states that l(r2 + s2 - d2 )/2rs I or e/r is an inversive invariant 
of two intersecting circles. 

Now the expression i(r2 + s2 - d 2 )/2rs 1 or e/r is defined even if x and y do not 
intersect; we shall call it the cosine between x and y, and denote it by cos(x, y). 
(It can be regarded as the cosine of the "imaginary angle" between x and y when 
x and y do not intersect, in which case cos(x, y) > 1, but there is no need to 
introduce this concept). It is not surprising that theorem 2 can be extended to 
theorem 3. 

THEOREM 3. The cosine between two circles is an inversive invariant, even when 
the two circles do not intersect. 

This simply means that if x, yare inverted to x', y' then cos(x, y) = cos(x', y'). 
If x and y do intersect, they may both be lines, in which case cos(x, y) is defined 
in the usual way. 

We shall use theorem 3 in section 3, but shall not discuss the proof until 
section 5. 

(In [8, p.366] , cos(x, y) is defined when x and y are cycles rather than circles; 
the concept of a cycle is explained at the end of section 5. The radius of a cycle 
may be negative, and we no longer need the modulus signs in the definition. The 
cosine between two cycles is also an inversive invariant.) 

0 

X 

Fig. 3 Fig. 4 
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3. Investigation of figure 1 

PROOF OF THEOREM 1. Invert figure 1 with respect to 0; we obtain figure 4, 
since circles touching at 0 invert to parallel lines, and touching circles or lines invert 
to touching circles or lines. Then 

d/ri = cos(ci, /) = cos(c'j, /') = I P + P - (2i) 2 i/2 = 2P - 1. 

To calculate the radius of the circle ci we can use a theorem that was first 
proved by Descartes. Much has been written about this theorem, and many proofs 
given; see [ 4, 5] for further references. The curvature of a circle of radius r is 
defined to be 1/r; a line has curvature 0. 

THEOREM 4 (Descartes' Circle Theorem). Let a, b, c, d be four circles each touch
ing the other three (and not all touching each other at the same point), and use 
the same symbols a, b, c, d to denote their curvatures. Then 

a c 

b 

(a.) (b) 

Fig. 5 

We can always shade the circles in such a way that the shaded regions do not 
overlap (figure 5). If the outside of one circle (say d) has to be shaded, as in figure 
5b, then the value of the curvature d must be taken as negative for theorem 4 to 
remain true. 

THEOREM 5. Denote the curvatures of the circles a, b, ci in figure 1 by a, b, ci. 
Then ci = P (a+ b)+ 2iy (ab). 
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PROOF. The curvature of lis 0. Hence by Descartes' theorem 

2(a2 +b2 +c1l = (a +b +cd 2 

;. ci- 2(a +b)c 1 + (a -b) 2 = 0 
~. c 1 = (a + b) + 2v' (ab). 

(There is a second circle touching a, b, l; its curvature is (a+ b)- 2y'(ab).) 

Also by Descartes' theorem 

2(a2 + b 2 + CJ + CJ + ,) (a + b + C; + C; + 1 )
2 

and 2(a2 +b 2 +cJ+ 1 +c1+ 2 ) = (a+b+c;+1 +c;+2l 2
• 

Subtracting (3) from (4), we have 

2(CJ-t-2-cll = CJ+2-c1+2(a+b+c;+1 )(c;+ 2 -c;) 
:. c;+2 + c; = 2(a +b +c;+ 1 ). 

( 1) 

(2) 

(3) 
(4) 

(5) 

If we write l = c0 , then the curvature c0 = 0, and (3) and (5) remain true when 
i = 0. From (2) and (5) with i = 0 we obtain 

c 2 = 4 (a + b) + 4v' (ab). (6) 

The general result follows by induction from (2), (6) and (5). 

4. The Arbelos of Pappus 

A similar result, but easier to prove than theorem 1, was first proved by the 
Alexandrian geometer Pappus (c. A.D. 300). The theorem takes its name from the 
Greek word ap{3rfAoS, a shoemaker's knife whose shape is shown in figure 7 [1 I 9]. 

THEOREM 6 (The Arbelos of Pappus). In figure 6, where the centres of a, band k 0 

lie on l, let k; have radius r; and let the distance of its centre from l bed;; then 
d;/r; = 2i. 

0 

Fig. 6 
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PROOF. There exists a circles with centre 0, orthogonal to k; (in figure 6, i = 2). 
Invert figure 6 with respect to s. We obtain figure 8; but k; and l are inverted to 
themselves, so clearly from figure 8 d;lr; = 2i. 

Fig. 7 
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Fig. 8 

l 0 

The nice aspect of this proof is that, by using different circles of inversion for 
different values of i, we avoid using Theorem 3 and apply only the basic properties 
of inversion. Alternatively, we can use just a single inversion with centre 0 and 
appeal to Theorem 3, but this is not necessary. 

Once again we can use Descartes' theorem to find an expression for the 
curvature k; in terms of the curvatures a and b. In figure 6 the curvature a is 
negative, but in figure 9, which illustrates the same theorem, a and b are positive 
but k 0 is negative. In all cases we find, taking the correct signs into account, that 

k 0 = -ab I (a + b), 
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0 

Rg.9 

and we leave the reader to prove, using methods similar to those in the proof of 
theorem 5: 

THEOREM 7. k; P (a +b) - ab/(a +b). 

5. Proof of Theorem 3 

One of the difficulties of proving theorem 3 by an "elementary" method is 
that there are various cases to consider, depending on whether the centre of inver
sion lies outside, on, or inside the two circles. We shall content ourselves with a 
proof when x and y are both circles and the centre of inversion lies outside both 
of them; this is perhaps unfair since in the application to theorem 1 one of the 
circles is a line, but this can be regarded as a limiting case. 

In figure 10, the circle x with centre X and radius r is inverted to x' with 
centre X* and radius r', using a circle of inversion with centre 0 and radius k; 
write OX = a, OX* = a'. Then OP. OP' = k 2

, i.e. v' (a2 
- r 2 )y ( a'2 

·- r 12 
) = k 2 

; 

also OP!PX = OP'/P'X*, i.e. v' (a2 
- r 2 )/r = . v' (a 12 

- r 12 )!r'. We deduce that 

(7) 

Also OX!XP OX* !X*P', i.e. 

air = a'/r~ (8) 
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(These formulae remain true when 0 lies inside x, if we then regard r' and a' as 
being negative.) 

I 
I 

0 

I 
I 

p 

I 
I 

I 

I 
I 

--- [ 

Fig. 10 

X 

Rg. 11 

Suppose that, using the same circle of inversion, the circle y with centre Y and 
radius sis inverted toy' with centre Y* and radius s' (figure 11); write OY = b, 
OY* =b~ Then 

and b/s = b'/s~ 

Now 

cos(x, y) = l(r2 + s2 
- d 2 )/2rs I 

= I r 2 + s2 
- a2 

- b 2 + 2ab cos 01.1 = 
2rs l

-k2 r/r'- k 2 sis' + ab cos 01.1 
2rs rs 

= ~-k2 (rs' + sr') 
2rr'ss' 

a b I + - • -cos Oi. • 
r s 

(9) 

(10) 

This expression remains unchanged when we replacer, s, r', s' by r', s', r, s respec
tively; hence cos(x, y) = cos(x', y1. 

Theorem 3 emerges in a much more satisfactory manner, avoiding the long 
algebraic proof and the consideration of special cases, if we use the important 
and basic concept of the cross-ratio of four concyclic points to define the cosine 
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between two circles. Various texts, such as [7], give the definition and basic 
properties of cross-ratios and other concepts associated with circles and inversion. 

Associated with an ordered set A, 8, C, D of four concyclic points is a real 
number, called their cross-ratio, denoted by (AB, CD), with the properties (AB, CD) 
·= (BA, DC) = (AB, DC)- 1 = (BA, CD)- 1 • The cross-ratio of four concyclic points 
is an inversive invariant. 

(a) (b) (c) 

Fig. 12 

Given two distinct circles x andy, there is an infinity of circles orthogonal to 
both, forming the coaxial system orthogonal to x and y (figure 12). If any circle 
c of this coaxial system meets x at P, P' andy at 0, Q' (figure 12c), then the cross
ratio (PP', QQ') is independent of c. We call this the cross-ratio of x andy. Since 
P and P' could be labelled in the opposite order, and similarly for Q and Q', we have 
to allow two cross-ratios, (PP', QQ') and (PP', Q'Q); we denote them by K(x, y) 
and K(x, y)- 1 • 

y 

Rg. 13 Rg. 14 

Taking c to be a line (figure 13) and using the formula 
(PP', QQ') = PQ.P'Q'/PQ'.P'Q, 

we find (using the previous notation) that 
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" (PP', QQ') = (cP - r2 
- s2 + 2rs)/(cP - r2 

- s2 
- 2rs) 

= cos(x, y) - 1 
cos(x, y) + 1 

cos(x, y) + 1 
or cos(x, y) - 1 

depending on the sign of (r2 + s2 
- d 2 /2rs. Hence either 

cos(x, y) 

Hence 

~ K+ 1 
1 _ " or cos(x, y) = ~ = 

1 +K- 1 

1 -" 1 

1
1 + IC •i 11 + "-1 I cos(x,y) = T=""K = 1 _"-1 · 

Since cross-ratio is an inversive invariant, then so is cos(x, y). 

If x and y intersect, then K(x, y) < 0 and cos(x, y) < 1, if x and y do not 
intersect, then K(x, y) > 0 and cos(x, y) > 1; if x and y touch, then K(x, y) = 0 or 
oo and cos(x, y) = 1. If x and y are orthogonal, then K(x, y) = -1 and cos(x, y) = 0. 

If x and y do not intersect, we define the inversive distance between them, 

d(x, y), to be cosh-1 cos(x, y) [2, 3]. This distance function satisfies the property 

that if x, y, z are coaxial, withy between x and z, then 

d(x, y) + d(y, z) = d(x, z), 

and is useful in the Poincare model of the hyperbolic plane. 

The sign of the radius and the curvature of a circle is automatically taken care 
of if we use cycles rather than circles. A cycle is a circle with a direction on it 
indicated by an arrow. An anticlockwise circle has positive radius and a clockwise 
circle has negative radius. All the touching circles in this article must be replaced by 
anti-touching cycles, with the arrows pointing in opposite directions at the point of 
tangency. Alternatively, a cycle can be regarded as either the interior or the exterior 
of a circle: compare figure 14 with figure 5b. 

The formula cos(x, y) = (r2 + s2 
- d 2 )/2rs, without modulus signs, is used 

for the cosine between two cycles [8, p. 366] ; this is an inversive invariant. 
Unfortunately there seems to be no way of using cross-ratios to define the cosine 
between two cycles: the previous definition cannot distinguish between positive 
and negative cosines. 
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